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Whispering gallery modes in open quantum billiards
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The poles of theS matrix and the wave functions of open two-dimensional quantum billiards with convex
boundary of different shape are calculated by using the method of complex scaling. Two leads are attached to
the cavities. The conductance of the cavities is calculated at energies with one, two, and three open channels
in each lead. Bands of overlapping resonance states appear that are localized along the convex boundary of the
cavities and contribute coherently to the conductance. These bands correspond to the whispering gallery modes
known from classical calculations.
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The physics of nanoscale systems has advanced ra
over the last few years. A consistent description of th
small systems is a challenging task for quantum theory s
their properties may be influenced strongly by attach
leads to them@1–9#. They are simulated often by means
quantum billiards. When the cavity is not fully opened, t
propagation of the modes is restricted to energies at wh
the overlap integral between the wave functions of the re
nance states and the channel wave functions is nonvanis
In the case of well isolated resonances, the electron
propagate, therefore, only at the energies of the reson
states~‘‘resonance tunneling’’!. Due to the coupling betwee
the internal states of the cavity and the channel modes,
states get widths. When the coupling is sufficiently stro
the resonances start to overlap and to interact via cha
modes. As a consequence, some redistribution in the r
nance states of the cavity takes place. It reflects the trans
from the spreading ofK channel modes over theN resonance
states of the cavity at small opening to their free propaga
at large opening. In the last case,N2K resonance states ar
~practically! decoupled from the channel while onlyK of
them are coupled strongly leading to a maximum propa
tion of theK waves in the cavity. An illustration forK51 is
shown in Ref.@9#. This transition, called resonance trappi
@10#, has been studied theoretically in many different s
tems such as nuclei, atoms, and molecules~for references see
Ref. @8#!. In microwave cavities, it is traced as a function
the opening of the cavity theoretically@5,6,8# as well as ex-
perimentally@11#.

The role of the structure of the cavity states themselve
the redistribution process is almost not studied up to n
We will show in the following that the interplay between th
structure of the cavity states and the one-to-one alignmen
a few states with channels characterizes the situation w
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the lead has a smaller extension than the cavity. Such a
is intermediate between the two limiting cases discus
above. The examples we consider are cavities with a con
boundary that are discussed recently in optical and other
vices @12,13#. In these systems, whispering gallery mod
~WGM! are known to appear classically. We show that in t
quantum mechanical calculations, a certain numberN1.K
of resonance states overlap, couple with similar strength
the channels in both leads whileN25N2N1 ones are almos
decoupled from the channels by resonance trapping. TheN1
states are localized near the convex boundary in contras
the other ones. The localized states correspond to the W
and cause an increased conduction~or reflection! of the
quantum billiard.

The properties of open quantum systems are descr
usually by means of the poles of theSmatrix. The resonance
part of theS matrix reads@8,10#

Scc85 i (
R51

N
g̃Rc8g̃Rc

E2ẼR1
i

2
G̃R

, ~1!

where the ẼR5ẼR2( i /2)G̃R are the ~energy dependent!
eigenenergies of the effective Hamilton operatorH5H0
1W of the open quantum billiard,H0 is the Hamiltonian of
the closed cavity and the
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2 (
c51

L

g̃Rcg̃R8c , ~2!

are complex, generally,@14#. Equation~1! is true also for
overlapping resonances@10#. The poles of theS matrix cor-
respond to the solutions of the fixed-point equationsER

[ER2( i /2)GR5ẼR(E5ER)2( i /2)G̃R(E5ER) and deter-
mine the energiesER and widthsGR of the resonance states
The gRc (g̃Rc) are the energy dependent coupling mat
elements between the eigenfunctionsFR of H0 ~eigenfunc-
tions F̃R of H) and the channel modes. Theg̃Rc determine,
together with the valuesẼR(E), the transmission(uScicj

( i j ) u2

o-
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from lead i to lead j Þ i and the reflection(uScici8
( i i ) u2 in the

lead i at the energyE. It is g̃Rc'gRc only for isolated reso-
nances.

In our calculations, we find the poles of theS matrix and
the wave functionsF̃R of the resonance states by using t
method of exterior complex scaling together with the fin
element method. For details see Refs.@5,6#. The conductance
is calculated from the Schro¨dinger equation for the close
cavity that is modified by the boundary conditions due
attaching the leads, see Ref.@15#.

We performed calculations for three small flat resonat
of different shape with comparable area: a semicircle as
example for an almost regular cavity, a semicircle with
internal scatterer~SIS!, and a semi-Bunimovich billiard a
examples for more chaotic cavities. Every resonator
coupled to two leads, see Figs. 1~c!–1~j! for the SIS. The
eigenvalue pictures are very similar to one another in
three cases. There are different groups of poles@see Fig.
1~a!#: one group is very near to the real axis while the oth
ones are lying deep in the complex plane. The states ne
the real axis are trapped by those of the other groups.

The short-lived states start at the opening of thresho
lying at E5p2, (2p)2 and (3p)2. They form bands of
overlapping resonance states, i.e., their widths are larger
their distance in energy. The states of the bandA appear
when the first channel opens. They are coupled strongl
the open channel in each of both leads@Figs. 1~c!, 1~d!, and
1~g!#. At E5(2p)2, the second band~B! of poles starts
whose wave functions are related to two channels in e
lead @Figs. 1~e! and 1~h!#. Here, also another groupB1 of
states arises the widths of which increase first but then
crease with increasing energy@Fig. 1~f!#. The bandsA andB
continue to higher energy while a new band~C! starts atE
5(3p)2 where the third threshold opens. The wave fun
tions of these states are related to three channels in e
lead @Fig. 1~i!#. Also here, another group (C1) of states ap-
pears whose widths first increase but then decrease with
creasing energy@Fig. 1~j!#.

In all three cases studied by us~semi-Bunimovich and
semicircle billiards!, the structure of the cavity states pla
an important role in the trapping process. The most inter
ing result is the localization of the wave functions of t
states belonging to the bandsA, B, andC, called WGM in
the following. The first WGM is pushed in direction to th
border of the cavity at higher energies while the second
is parallel to it. Even some hint to a third WGM can be se
when three channels are open atE.(3p)2. In contrast to the
WGM, the long-lived states are spread over the whole cav

The WGM are characteristic of the closed systems c
sidered by us. Attaching the leads to the cavities as show
Fig. 1, the WGM get large coupling matrix elementsgRc in
relation to the channelsc. When the cavities become opene
the widthsG̃R of the WGM can further increase by trappin
the other resonance states. The states belonging to the W
form bands with a~nearly! square root dependence on e
ergy.

In Fig. 2~a!, we show the eigenvalue picture for the S
whose convex surface is distorted by a cut@Fig. 2~g!#. There
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are two groups of short-lived states corresponding to the
that the WGM splits, by the distorting cut, into two par
with different lengths of the ‘‘ways’’ for reflection in chan
nel 1 and 2. The two separated parts of the WGM can
seen in the wave functions of these states. One examp
shown in Fig. 2~g!.

The eigenvalue picture shown in Fig. 2~c! corresponds to
the SIS with a shifted positions51 of one of the leads, se
Fig. 2~h!. Also this eigenvalue picture shows some ba
structure. The states of the bandA split into two parts: the
localized part~related to the WGM! is coupled more strongly
to the unshifted lead than to the shifted one while the ot
~not localized! part, arising from the ‘‘sea’’ of almost bound
states, is coupled also to the shifted lead. Both parts inte
strongly at higher energy where two channels are open.

The trajectories of the eigenvalues as a function of
shift s of the left lead@Fig. 2~e!# show the mechanism o
resonance trapping. The widths of the WGM decrease a
function of increasings while the widths of some states o
the ‘‘sea’’ of almost bound states increase according to
sum rule (G̃R(E)5const. In the neighborhood ofs52.5,
resonance trapping occurs between the latter states:
widths of three states become maximum ats52.5 by trap-
ping the other ones that again approach the real axis at
value ofs. The wave functions of the short-lived states ha
a clear bouncing-ball structure@Fig. 2~i!#. The poles of the
WGM are almost independent ofs in the neighborhood of
s52.5 and their wave functions have kept their WGM stru
ture@Fig. 2~j!#. The bouncing-ball structure is less stable th
the WGM one since the degree of overlapping of the pole
smaller@Fig. 2~e!#.

The properties of the resonance states are reflected
least partly, in the conductivity of the cavity. According
Eq. ~1!, the maximum value of the matrix elementScc

( i j ) is

reached forg̃Rc
( i )'g̃Rc

( j ) ( j Þ i ). While single short-lived states
formed by resonance trapping are aligned each with
channel andg̃Rc8!g̃Rc , each of the two statesR andR8 is
coupled to both channels with almost the same strength w
the poles overlap (ER8'ER) as the poles of the WGM do
The WGM are expected, therefore, to cause a large con
tance of the cavity when the leads are attached symm
cally.

In Fig. 1~b!, the conductivity of the SIS is shown as
function of energy. The coherent structure of the cond
tance in the energy interval between the two lowest thre
olds can be seen clearly. The mean value of the conducta
is about 0.9 in the energy interval between the two low
thresholds. In the next higher energy region, the value of
conductance is never smaller than 1 meaning that the wav
reflected into one channel, at the most.

We calculated also the conductance and reflection of
SIS, when its shape is distorted either by a cut in the circu
boundary of the cavity@Fig. 2~b!# or by a somewhat shifted
position of one of the leads@Fig. 2~d!#. The reflection shows
in the first case, the same coherent structure as the con
tance in the undistorted case. The mean value is large in
energy regions considered. In the other case, the conduct
decreases strongly with energy in the interval between
4-2
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FIG. 1. The poles of theSma-
trix ~a! and conductance G
5(uScicj

( i j ) u2 ~b! for the SIS. The
poles of theS matrix ~denoted by
stars! are connected by lines fo
guiding the eyes. The full lines in
~b! show the mean value of the
conductivity between every two
thresholds. Some wave function

(uF̃Ru2) of the SIS:~c! from band
A of the first energy intervalp2

,E,(2p)2, ~d!, ~e!, and~f! from
bandsA, B, and B1 of the sec-
ond energy interval (2p)2,E
,(3p)2, ~g!, ~h!, ~i!, and~j! from
bandsA, B, C, and C1 of the
third energy interval (3p)2,E
,(4p)2. The energiesER and
widthsGR are in units\2/(2md2)
whered51 is the width of the at-
tached waveguide.
056214-3



f

NAZMITDINOV, PICHUGIN, ROTTER, AND ŠEBA PHYSICAL REVIEW E 64 056214
FIG. 2. The poles of theSma-
trix ~a!,~c!, reflection R
5(uScici8

( i i ) u2, ~b! and conductance

G5(uScicj

( i j ) u2 ~d! for the SIS dis-
torted by a cut in the circular
boundary of the cavity~a!,~b! and
by a somewhat shifted position o
one of the leads~c!,~d!. One wave

function (uF̃Ru2) for each case is
shown in ~g! and ~h!. The trajec-
tories of the poles of theS matrix

~e! and the mean valueḠ of the
conductance~f! as a function of
the positions of the left lead. In
~e!, the poles at the positionss
50, 2.5, 3 are marked with
L, n and ,. Two wave func-
tions ~i!,~j! at s52.5. For further
explanations see Fig. 1.
056214-4
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first and second threshold. This is caused by the fact
modes with higher energy are localized nearer to the con
boundary of the cavity than those with lower energy. T
result is supported by the behavior of the conductance
higher energy that does not exceed the maximum valu
the conductance of a one-channel case. The conductance
function of the position of one of the leads@Fig. 2~f!# de-
creases strongly with approaching the bouncing-ball sit
tion (s52.5). Here, reflection is maximum.

To shed light on the quantum mechanical results we c
sider the classical motion of a free particle inside billiar
with the same geometry as discussed above. The potent
assumed to be zero inside the billiard and the boundaries
mirrors for the motion of the particle along trajectories c
culated from the laws of geometrical optics. The dynamics
the motion can be reduced to a canonical mapping
Birkhoff coordinates (q,p), @16# which is a Poincare´ map-
ping at the boundary of the billiard. The coordinateq is that
of the arc length at the boundary of the billiard where t
bounce takes place, andpt5p•t/upu is the tangential momen
tum at this point. Each trajectory starts at some arbitr
initial point (x0 ,y0) of the attached leads with an anglea0
characterizing the direction of the motion. The trajector
that run close to the convex boundary of our billiard a
accumulate upon it are defined as the WGM of the billia
These trajectories occupy the major part of the surface
section as can be seen from Fig. 3 for the SIS. The symm
of the chosen geometry is reflected in the mapping of
regions corresponding to a different number of bounces
the boundary. Additionally, we calculated the ratio of t
number of trajectories of the WGM to the total number
trajectories passing through the billiard. This ratio is ab
60% for the semicircle and about 70% for the SIS, since
non-WGM trajectories are hindered by the scatterer ins
the cavity. This result supports the idea that the WGM g
the main contribution to the conductance. Further, a billi
with a convex boundary possesses a family of invariant
that correspond to the motion close to the boundary@17#. In
g-
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our quantum mechanical simulations, the wave functions
the states of the WGM band are localized close to the con
boundary in the closed systems and remain localized w
the systems are opened to a few channels by attaching l
to them. Thus, the classical results are in qualitative ag
ment with the quantum-mechanical ones.

Summarizing the results, we state the following. In open
quantum cavities with convex boundary, the structure of
wave functions of the cavity states plays an important role
the trapping process. Some resonance states receive
widths by trapping the remaining ones, form bands of ov
lapping resonance states, and are localized near the co
boundary of the cavity. These bands correspond to the W
known from classical calculations for different systems w
convex boundary. When two leads are attached symm
cally to the cavity, the WGM are coupled to both leads w
almost the same strength. WGM-like structures exist in re
tion to every open channel in the two waveguides. T
WGM are responsible for a high conductivity that decrea
dramatically when the symmetry of the system is distort
This fact can be used surely for the design of quantum c
ties in practical applications.

FIG. 3. Classical Poincare´ section for the SIS in the Birkhoff
variables: tangential momentumpt vs arc lengthq. The trajectories
of the WGM are distinguished according to the numberm of
bounces at the boundary form<5.
.
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